
Neil Chulani

Sequential Implementation of AES-128 on FPGA

Introduction
The main objective for this project was to understand the specifications of AES-128 and

implement the encryption (and key scheduling) algorithm on the FPGA. The purpose of this is to use the
FPGA as a hardware accelerator to increase the speed of the encryption process. Performing AES
encryption is much easier to do programmatically on the MCU, but would take much longer to do,
making a hardware implementation viable. One big focus point of the lab was the limitations of our
FPGA; due to the size of the FPGA we are using, we cannot just implement all of the rounds in one large
block of combinational logic. We had to design a sequential process to fit the architecture on the FPGA,
which will be described in detail in the following sections.

Design and Testing Methodology
To start this design, I created the modules and testbenches for each of the “helper” modules.

These included Add Round Key, Rot Word, Shift Rows, Sub Bytes, and Sub Word. These helper modules
are used during key expansion and during each round. By designing and testing each module separately, I
could go into the process of creating logic to perform the overall encryption with a strong foundation and
confidence that each separate module functions correctly.

The main architecture of my implementation is based on a large FSM that performs both the key
expansion and the encryption. By using an FSM, I can ensure that the key is correctly expanded for the
round before beginning any encryption operations for that round. The FSM keeps track of the round and
continuously updates the expanded key and the ciphertext until it finishes round 10, at which point the
encryption process is finished and it can mark the done flag. I designed a testbench to test this FSM based
on the provided AES test vectors in the specifications, and then used the FSM in the aes_core module.
The aes_code module itself is a small FSM that helps control when to encrypt a new plaintext message
with a new key. One thing that I had to change when going from the FSM to the aes_core module was that
I had to add a delay at the beginning to ensure that the aes_core module had time to properly populate the
plaintext and the key. I had to add a larger delay when testing the aes_spi module for a similar reason, to
give the module time to populate the key and plaintext correctly. After adding the delays before the
encryption process in the FSM module, both the aes_core and the aes_spi testbenches ran successfully.

Technical Documentation
System Verilog Code for AES_SPI was not to be modified.
AES_SPI Testbench Output (Alternate Testcase):



Note: the error is just a path error I have on Parallels Desktop VM, but we can see the testbench
successful message before it



SystemVerilog Code for AES_CORE :



AES_CORE Testbench Output (Alternate Testcase):

Note: the error is just a path error I have on Parallels Desktop VM, but we can see the testbench
successful message before it



SystemVerilog Code for AES_FSM:



Encryption FSM Testbench Output:

SystemVerilog Code for Add Round Key:



Add Round Key Testbench Output:

SystemVerilog Code for Shift Rows:

Shift Rows Testbench Output:

SystemVerilog Code for Sub Word:



Sub Word Testbench Output:

SystemVerilog Code for Sub Bytes:



Sub Bytes Testbench Output:

SystemVerilog Code for Rot Word:



Rot Word Testbench Output:



AES_FSM Diagram:



AES_FSM Block Diagram:

aes_core Block Diagram:

Results and Discussion
Throughout this lab, I was able to get very comfortable with each step of AES encryption,

including key expansion. The architecture that I designed does fit on the FPGA. It uses 1337 out of the
5280 slice registers and 2443 out of the 5280 4 input Look Up Tables. With this design, I was able to
successfully simulate not only the AES encryption given a key and plaintext, but also the core and spi
modules that would allow the hardware accelerator to interact with the MCU.

Conclusions
This has been my favorite lab of the class, as I am extremely interested in security and

cryptography, especially in hardware. Because of this, I had begun working on implementing AES on an
FPGA in the summer, but at the time I barely had any FPGA experience so I struggled with understanding
what needed to be done. I had been looking forward to this lab since registering for the course, and it



certainly lived up to my expectations. One thing that I found extremely useful for the key expansion part
was the AES visualization website, as it was a little hard to understand what was supposed to happen from
the pseudocode in the specification (specifically the recursive aspect).

In total, this lab took me approximately 12 hours to complete. At least half of this was spent
thinking through and drawing out the FSM to perform key expansion and encryption. The design meets
all proficiency requirements.


